奈米網路

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書

奈米網路是由一組幾百奈米至幾微米級的奈米機器連接而成的網路。它們能夠執行如計算資料儲存檢測以及驅動等非常簡單的任務。主要應用在生物醫學、環境研究、軍事技術等領域。[1][2]奈米網路的通訊協定是在IEEE P1906.1中定義的。

通訊方法[編輯]

電磁[編輯]

新型奈米材料可以傳輸和接收電磁輻射[3]。新一代奈米電子組件有奈米電池[4]、奈米能量收集系統[5] 、奈米記憶體[6]、奈米邏輯電路、奈米天線等。[7][8]

分子[編輯]

藉助分子也可以實現資訊的傳輸和接收,有行徑、流動和擴散等三種方式。

  • 基於流動的通訊方式如荷爾蒙通過血液實現在人體內的傳播、費洛蒙長程分子通訊等。[11]
  • 基於擴散的通訊方式如輸送鈣訊號的細胞 [12],以及群體感應中的細菌等。[13]

參考文獻[編輯]

  1. ^ J. M. Jornet and M. Pierobon. Nanonetworks: A New Frontier in Communications 54: 84–89. 2011-11 [2018-02-08]. doi:10.1145/2018396.2018417. (原始內容存檔於2011-10-31). 
  2. ^ Nanoscale Communication Networks, Bush, S. F., ISBN 978-1-60807-003-9, Artech House, 2010. [1]
  3. ^ C. Rutherglen and P. J. Burke "Nano-Electromagnetics: Circuit and Electromagnetic Properties of Carbon Nanotubes," Small, 5(8), 884–906 (2009)
  4. ^ A. E. Curtright, P. J. Bouwman, R. C. Wartane and K. E. Swider-Lyons, "Power Sources for Nanotechnology," International Journal of Nanotechnology, Vol. 1, pp. 226–239, 2004.
  5. ^ Z. L. Wang, "Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics," Advanced Functional Materials, Vol. 18, pp. 3553–3567, 2008.
  6. ^ Bennewitz, R.; Crain, J. N.; Kirakosian, A.; Lin, J.-L.; McChesney, J. L.; Petrovykh, D. Y. & Himpsel, F. J. Atomic scale memory at a silicon surface Nanotechnology, Vol. 13, pp. 499–502, 2002.
  7. ^ Peter J. Burke, Shengdong Li, Zhen Yu "Quantitative theory of nanowire and nanotube antenna performance," IEEE Transactions on Nanotechnology Vol. 5 n. 4, pp. 314–334, 2006.
  8. ^ Peter J. Burke, Chris Rutherglen, and Zhen Yu, "Carbon Nanotube Antennas," in Proc. SPIE Int. Soc. Opt. Eng. 6328, 632806-1, 2006 .
  9. ^ M. Moore, A. Enomoto, T. Nakano, R. Egashira, T. Suda, A. Kayasuga, H. Kojima, H. Sakakibara, and K. Oiwa, "A Design of a Molecular Communication System for Nanomachines Using Molecular Motors," in Proc. Fourth Annual IEEE Conference on Pervasive Computing and Communications and Workshops, March 2006
  10. ^ M. Gregori and Ian F. Akyildiz, "A New NanoNetwork Architecture using Flagellated Bacteria and Catalytic Nanomotors," IEEE JSAC (Journal of Selected Areas in Communications), Vol. 28, No. 4, pp. 612–619, May 2010.
  11. ^ L. Parcerisa and Ian F. Akyildiz, "Molecular Communication Options for Long Range Nanonetworks," Computer Networks Journal (Elsevier), Vol. 53, No. 16, pp. 2753–2766, November 2009.
  12. ^ M. T. Barros. "Ca2+-signaling-based molecular communication systems: design and future research directions". Elsevier Nano Communication Networks. vol 11, pp 103–113. 2017. [2]
  13. ^ "The challenge of molecular communication", Technology Review (Physics arXiv blog), 28 June 2010. [3]頁面存檔備份,存於網際網路檔案館