非洲豬瘟病毒

維基百科,自由的百科全書
非洲豬瘟病毒
病毒顆粒的電子顯微照片
病毒分類 編輯
(未分級) 病毒 Virus
域: 多變DNA病毒域 Varidnaviria
界: 班福病毒界 Bamfordvirae
門: 核質病毒門 Nucleocytoviricota
綱: 痘疹病毒綱 Pokkesviricetes
目: 非洲豬瘟病毒目 Asfuvirales
科: 非洲豬瘟病毒科 Asfarviridae
屬: 非洲豬瘟病毒屬 Asfivirus
種:
非洲豬瘟病毒 African swine fever virus

非洲豬瘟病毒(學名:African swine fever virus,縮寫ASFV)是非洲豬瘟病毒科非洲豬瘟病毒屬下的唯一成員,是一種雙鏈DNA病毒[1],會引起豬類患上非洲豬瘟。根據其B646L基因3′端序列的差異,非洲豬瘟病毒被分為24個基因型,所有基因型在非洲都有分布,但只有基因Ⅰ型和Ⅱ型傳播至非洲以外的地區,包括歐洲美洲亞洲等地區[2]

非洲豬瘟病毒屬[編輯]

非洲豬瘟病毒屬(Asfivirus)只有一個物種,就是「非洲豬瘟病毒」,只會感染豬隻,令豬隻發病。本屬的學名asfivirus源於這種病毒的英文名稱「African swine fever」。本科病毒為DNA病毒,突變機率低於RNA病毒[3]

非洲豬瘟病毒在基因組結構和複製策略方面表現出一些與痘病毒科藻類DNA病毒科物種的相似之處,但病毒粒子結構不同於痘病毒而有所區別[4][5]

分布與傳播[編輯]

根據非洲豬瘟病毒B646L基因3′端序列差異,非洲豬瘟病毒被分為24個基因型[6]。所有基因型均在非洲境內存在[7],但只有基因Ⅰ型和Ⅱ型傳播至非洲以外地區,包括歐洲、美洲和亞洲[2]。歐洲主要流行基因Ⅰ型和Ⅱ型[8][9],而亞洲則主要流行基因Ⅱ型[10][11]

自1957年起,基因Ⅰ型首次從非洲傳播至葡萄牙,然後傳播到西班牙法國馬德拉意大利古巴馬耳他巴西多米尼加共和國海地等國家,目前除了意大利撒丁島外,基因Ⅰ型在其餘國家均已被消滅[12]

2021年底,在中國部分區域的非洲豬瘟疫情中出現了基因Ⅰ型和Ⅱ型病毒的共存情況[2]。研究發現非洲豬瘟病毒在不同基因型之間發生了自然重組,從而產生了新的自然重組病毒,這些病毒形成了一個獨立的進化分支,位於基因Ⅰ型分支和基因Ⅱ型分支之間,根據其B646L基因,仍被鑑定為基因Ⅰ型[13]

結構[編輯]

非洲豬瘟病毒基因組編碼超過150種蛋白質[2],還是唯一一種以昆蟲為媒介的DNA病毒[14]

非洲豬瘟病毒具有獨特的五層結構,包括外囊膜外衣殼、雙層內膜、核心殼層和基因組,病毒顆粒約含有3萬餘個蛋白分子,組裝成直徑約為260納米的球形顆粒[15]

基因功能[編輯]

非洲豬瘟病毒是一種致命的線性雙鏈DNA病毒,其基因組長度為17至19.3萬鹼基對,末端為共價閉合環[16]。其基因組編碼多種參與DNA複製、修復、核苷酸代謝轉錄以及其他酶活性或宿主免疫逃逸相關的基因[17]。對非洲豬瘟病毒感染豬肺泡巨噬細胞(porcine alveolar macrophages)的研究表明,其基因表達具有時間依賴性,能夠抑制宿主免疫反應並引發宿主趨化因子和代謝途徑的失調[18]

以下是非洲豬瘟病毒部分關鍵基因的功能:

  • EP402R:該基因編碼蛋白CD2v可以抑制Ⅰ型干擾素產生,影響非洲豬瘟病毒的致病力[19]
  • pH240R:是非洲豬瘟病毒的一個衣殼蛋白,由240個氨基酸組成[15]。它能夠影響病毒粒子的組裝[20],抑制Ⅰ型干擾素的產生,增強病毒複製[21]。也是非洲豬瘟病毒的關鍵毒力基因,通過抑制炎症反應影響病毒的致病力[22][23]
  • MGF505-7R:是非洲豬瘟病毒的多基因家族中的一員,能抑制炎性小體的形成和Ⅰ型干擾素的產生[24]
  • pE199L:在感染晚期表達[25],且與非洲豬瘟病毒的進入和細胞自噬有關[26][27]

參考文獻[編輯]

  1. ^ Dixon; et al. African Swine Fever Virus. Animal Viruses: Molecular Biology. Caister Academic Press. 2008 [2024-03-25]. ISBN 978-1-904455-22-6. (原始內容存檔於2023-03-27). 
  2. ^ 2.0 2.1 2.2 2.3 Zhang, ZhenJiang; Sun, EnCheng; Zhu, YuanMao; Li, Fang; Bu, ZhiGao; Zhao, DongMing. Research progress on African swine fever in China. SCIENTIA SINICA Vitae. 2023-12-01. doi:10.1360/SSV-2023-0190. 
  3. ^ 聯合新聞網. 非洲豬瘟不會傳染人 但疾管署提醒這件事威脅嚴重. 聯合新聞網. [2019-09-09]. (原始內容存檔於2019-06-09). 
  4. ^ ICTV Online (10th) Report. 
  5. ^ Index of Viruses—Asfarviridae (2006). In: ICTVdB—The Universal Virus Database, version 4. Büchen-Osmond, C (Ed), Columbia University, New York, USA. https://www.ncbi.nlm.nih.gov/ICTVdb/Ictv/fs_index.htm頁面存檔備份,存於網際網路檔案館[頁碼請求]
  6. ^ Penrith, Mary‐Louise; Bastos, Armanda Duarte; Etter, Eric M. C.; Beltrán‐Alcrudo, Daniel. Epidemiology of African swine fever in Africa today: Sylvatic cycle versus socio‐economic imperatives. Transboundary and Emerging Diseases. 2019-03, 66 (2): 672–686. doi:10.1111/tbed.13117. 
  7. ^ Quembo, C. J.; Jori, F.; Vosloo, W.; Heath, L. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transboundary and Emerging Diseases. 2018-04, 65 (2): 420–431. doi:10.1111/tbed.12700. 
  8. ^ Costard, Solenne; Wieland, Barbara; de Glanville, William; Jori, Ferran; Rowlands, Rebecca; Vosloo, Wilna; Roger, Francois; Pfeiffer, Dirk U.; Dixon, Linda K. African swine fever: how can global spread be prevented?. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009-09-27, 364 (1530): 2683–2696. doi:10.1098/rstb.2009.0098. 
  9. ^ Cwynar, Przemyslaw; Stojkov, Jane; Wlazlak, Klaudia. African Swine Fever Status in Europe. Viruses. 2019-03-30, 11 (4): 310. doi:10.3390/v11040310. 
  10. ^ Zhao, Dongming; Liu, Renqiang; Zhang, Xianfeng; Li, Fang; Wang, Jingfei; Zhang, Jiwen; Liu, Xing; Wang, Lulu; Zhang, Jiaoer; Wu, Xinzhou; Guan, Yuntao; Chen, Weiye; Wang, Xijun; He, Xijun; Bu, Zhigao. Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerging Microbes & Infections. 2019-01, 8 (1): 438–447. doi:10.1080/22221751.2019.1590128. 
  11. ^ Gao, Lu; Sun, Xiangdong; Yang, Honglin; Xu, Quangang; Li, Juan; Kang, Jingli; Liu, Ping; Zhang, Yi; Wang, Youming; Huang, Baoxu. Epidemic situation and control measures of African Swine Fever Outbreaks in China 2018–2020. Transboundary and Emerging Diseases. 2021-09, 68 (5): 2676–2686. doi:10.1111/tbed.13968. 
  12. ^ Desmecht, Daniel; Gerbier, Guillaume; Gortázar Schmidt, Christian; Grigaliuniene, Vilija; Helyes, Georgina; Kantere, Maria; Korytarova, Daniela; Linden, Annick; Miteva, Aleksandra; Neghirla, Ioana; Olsevskis, Edvins; Ostojic, Sasa; Petit, Tom; Staubach, Christoph; Thulke, Hans‐Hermann; Viltrop, Arvo; Richard, Wallo; Wozniakowski, Grzegorz; Cortiñas, José Abrahantes; Broglia, Alessandro; Dhollander, Sofie; Lima, Eliana; Papanikolaou, Alexandra; Van der Stede, Yves; Ståhl, Karl. Epidemiological analysis of African swine fever in the European Union (September 2019 to August 2020). EFSA Journal. 2021-05, 19 (5). doi:10.2903/j.efsa.2021.6572. 
  13. ^ Zhao, Dongming; Sun, Encheng; Huang, Lianyu; Ding, Leilei; Zhu, Yuanmao; Zhang, Jiwen; Shen, Dongdong; Zhang, Xianfeng; Zhang, Zhenjiang; Ren, Tao; Wang, Wan; Li, Fang; He, Xijun; Bu, Zhigao. Highly lethal genotype I and II recombinant African swine fever viruses detected in pigs. Nature Communications. 2023-05-29, 14 (1). doi:10.1038/s41467-023-38868-w. 
  14. ^ Tabarés, E.; Marcotegui, M. A.; Fernández, M.; Sánchez-Botija, C. Proteins specified by African swine fever virus: I. Analysis of viral structural proteins and antigenic properties. Archives of Virology. 1980-06, 66 (2): 107–117. doi:10.1007/BF01314979. 
  15. ^ 15.0 15.1 Wang, Nan; Zhao, Dongming; Wang, Jialing; Zhang, Yangling; Wang, Ming; Gao, Yan; Li, Fang; Wang, Jingfei; Bu, Zhigao; Rao, Zihe; Wang, Xiangxi. Architecture of African swine fever virus and implications for viral assembly. Science. 2019-11, 366 (6465): 640–644. doi:10.1126/science.aaz1439. 
  16. ^ Malogolovkin, Alexander; Kolbasov, Denis. Genetic and antigenic diversity of African swine fever virus. Virus Research. 2019-10, 271: 197673. doi:10.1016/j.virusres.2019.197673. 
  17. ^ Dixon, Linda K.; Chapman, David A.G.; Netherton, Christopher L.; Upton, Chris. African swine fever virus replication and genomics. Virus Research. 2013-04, 173 (1): 3–14. doi:10.1016/j.virusres.2012.10.020. 
  18. ^ Ju, Xiaohui; Li, Fang; Li, Jingrui; Wu, Chunyan; Xiang, Guangtao; Zhao, Xiaomin; Nan, Yuchen; Zhao, Dongming; Ding, Qiang. Genome-wide transcriptomic analysis of highly virulent African swine fever virus infection reveals complex and unique virus host interaction. Veterinary Microbiology. 2021-10, 261: 109211. doi:10.1016/j.vetmic.2021.109211. 
  19. ^ Huang, Li; Chen, Weiye; Liu, Hongyang; Xue, Mengdi; Dong, Siqi; Liu, Xiaohong; Feng, Chunying; Cao, Shinuo; Ye, Guangqiang; Zhou, Qiongqiong; Zhang, Zhaoxia; Zheng, Jun; Li, Jiangnan; Zhao, Dongming; Wang, Zilong; Sun, Encheng; Chen, Hefeng; Zhang, Shuai; Wang, Xue; Zhang, Xianfeng; He, Xijun; Guan, Yuntao; Bu, Zhigao; Weng, Changjiang. African Swine Fever Virus HLJ/18 CD2v Suppresses Type I IFN Production and IFN-Stimulated Genes Expression through Negatively Regulating cGMP-AMP Synthase–STING and IFN Signaling Pathways. The Journal of Immunology. 2023-05-01, 210 (9): 1338–1350. doi:10.4049/jimmunol.2200813. 
  20. ^ Zhou, P; Li, LF; Zhang, K; Wang, B; Tang, L; Li, M; Wang, T; Sun, Y; Li, S; Qiu, HJ. Deletion of the H240R Gene of African Swine Fever Virus Decreases Infectious Progeny Virus Production Due to Aberrant Virion Morphogenesis and Enhances Inflammatory Cytokine Expression in Porcine Macrophages.. Journal of virology. 2022-02-09, 96 (3): e0166721. PMID 34787458. doi:10.1128/JVI.01667-21. 
  21. ^ Ye, G; Liu, H; Liu, X; Chen, W; Li, J; Zhao, D; Wang, G; Feng, C; Zhang, Z; Zhou, Q; Zheng, J; Bu, Z; Weng, C; Huang, L. African Swine Fever Virus H240R Protein Inhibits the Production of Type I Interferon through Disrupting the Oligomerization of STING.. Journal of virology. 2023-09-28, 97 (9): e0057723. PMID 37199611. doi:10.1128/jvi.00577-23. 
  22. ^ Zhou, P; Dai, J; Zhang, K; Wang, T; Li, LF; Luo, Y; Sun, Y; Qiu, HJ; Li, S. The H240R Protein of African Swine Fever Virus Inhibits Interleukin 1β Production by Inhibiting NEMO Expression and NLRP3 Oligomerization.. Journal of virology. 2022-11-23, 96 (22): e0095422. PMID 36326277. doi:10.1128/jvi.00954-22. 
  23. ^ Huang, Li; Liu, Hongyang; Ye, Guangqiang; Liu, Xiaohong; Chen, Weiye; Wang, Zilong; Zhao, Dongming; Zhang, Zhaoxia; Feng, Chunying; Hu, Liang; Yu, Huibin; Zhou, Shijun; Zhang, Xianfeng; He, Xijun; Zheng, Jun; Bu, Zhigao; Li, Jiangnan; Weng, Changjiang. Deletion of African Swine Fever Virus (ASFV) H240R Gene Attenuates the Virulence of ASFV by Enhancing NLRP3-Mediated Inflammatory Responses. Journal of Virology. 2023-02-28, 97 (2). doi:10.1128/jvi.01227-22. 
  24. ^ Li, J; Song, J; Kang, L; Huang, L; Zhou, S; Hu, L; Zheng, J; Li, C; Zhang, X; He, X; Zhao, D; Bu, Z; Weng, C. pMGF505-7R determines pathogenicity of African swine fever virus infection by inhibiting IL-1β and type I IFN production.. PLoS pathogens. 2021-07, 17 (7): e1009733. PMID 34310655. doi:10.1371/journal.ppat.1009733. 
  25. ^ Sun, H.; Jenson, J.; Dixon, L. K.; Parkhouse, R. M. E. Characterization of the African swine fever virion protein j18L. Journal of General Virology. 1996-05-01, 77 (5): 941–946. doi:10.1099/0022-1317-77-5-941. 
  26. ^ Chen, Sheng; Zhang, Xinheng; Nie, Yu; Li, Hongxin; Chen, Weiguo; Lin, Wencheng; Chen, Feng; Xie, Qingmei. African Swine Fever Virus Protein E199L Promotes Cell Autophagy through the Interaction of PYCR2. Virologica Sinica. 2021-04, 36 (2): 196–206. doi:10.1007/s12250-021-00375-x. 
  27. ^ Matamoros, T; Alejo, A; Rodríguez, JM; Hernáez, B; Guerra, M; Fraile-Ramos, A; Andrés, G. African Swine Fever Virus Protein pE199L Mediates Virus Entry by Enabling Membrane Fusion and Core Penetration.. mBio. 2020-08-11, 11 (4). PMID 32788374. doi:10.1128/mBio.00789-20.